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LETTER TO THE EDITOR 

Clusters and fractals in three-dimensional kinetic gelation in 
the presence of a mobile solvent 

R Bansilt, B Carvalhot and H J HerrmannS 
t Center for Polymer Studies5 and Department of Physics, Boston University, Boston MA 
02215, USA 
$ Service de Physique Theorique, C E N  Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 2 August 1984 

Abstract. We have analysed the cluster size distribution for three-dimensional kinetic 
gelation. Our simulations are done on cubic lattices of size up to 453 and they include 
30% solvent molecules which are capable of diffusing. We observe that the cluster 
distribution as a function of cluster size is non-monotonic. The peak of this distribution 
shifts to larger values of s as the reaction proceeds. For fixed extent of reaction the peak 
shifts to smaller values of s as the concentration of initiators is increased and eventually 
crosses over to random percolation type behaviour. We find that for large s the cluster 
distribution at p c  behaves as n, - s-' with 7 = 2.3 f 0.2 in agreement with the value for 
random percolation. We perform a direct measurement of the fractal dimension d,  of the 
largest cluster at gelation and find that d,  is the same as in random percolation. 

The process of free radical initiated irreversible polymerisation in gels such as poly- 
acrylamide can be simulated by a kinetic gelation model originally proposed by 
Manneville and de Seze (1981) and developed extensively by Herrmann et a1 (1982, 
1983). Bansil et a1 (1984) have incorporated the presence of a mobile solvent to make 
the computer simulations more realistic. This kinetic gelation model has been shown 
to be in a different universality class from standard percolation or the Flory theory 
(Herrmann et al 1982). From two-dimensional simulations Jan et al (1983a) have 
shown that the cluster distribution is not a monotonically decreasing function of cluster 
size as it is in percolation. (For a recent review on percolation see Stauffer et al 1982.) 
In this letter we show that a similar non-monotonicity is observed in the cluster 
distribution as a function of cluster size in three-dimensional simulations. 

The calculations reported in this paper use the version of the kinetic gelation model 
described in Herrmann et a1 (1983) and Bansil et a1 (1984). The basic steps in the 
simulation are (i)  the random distribution of bifunctional (B), tetrafunctional (T) and 
solvent ( S )  monomers on the sites of a 3~ cubic lattice of size L3 with the total 
concentration of monomers satisfying CB+ CT+ Cs = 1 ; (ii) the reaction is initiated by 
making a fraction C, of the bonds emanating from the B and T monomers reactive 
and by drawing one bond from each of the initiated monomers; (iii) growth proceeds 
by transferring the radical to a randomly chosen nearest-neighbour monomer provided 
all its functionalities have not been saturated; (iv) growth terminates either by the 
annihilation of the radicals or the trapping of all radicals (for details, see Bansil et al 
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1984). Mobility of unreacted monomers and solvent molecules is included by permitting 
nearest-neighbour exchanges between solvent and unreacted monomers. 

The simulation keeps track of various parameters of which the one most pertinent 
for this work is the extent of reaction p, defined as the number of bonds grown up to 
that step. (For purposes of comparison with laboratory experiments and previous 
work (Bansil et a1 1984) we normalise p by dividing by L3(cB+2cT), the maximum 
possible number of bonds.) For a given value of p we obtain n, the number of s-site 
clusters (normalised per site) as a function of s. Figure 1 shows the cluster size 
distribution n, against s at several values of p for a simulation on a 3~ cubic lattice 
with L = 20, CI = 0.003, Cs = 0.3, CB = 0.28, CT = 0.42 which corresponds to the fraction 
of tetrafunctional monomers fT= CT/(CT+ CB) equal to 0.6. The diffusivity 0, i.e., 
the ratio of the number of exchange attempts for solvent molecules to the number of 
bonds grown between exchange attempts was equal to 160. For these concentrations, 
gelation occurs at p c  = 0.22. As can be seen from figure 1 , there is a well defined 
maximum in this distribution. This non-monotonic behaviour persists in the critical 
region and beyond. 
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Figure 1. Log-log plot of normalised cluster number n, (number of clusters per site) against 
cluster size s for different values of p .  The data are obtained by averaging over 50 realisations 
on a 20’ lattice with C, = 0.003 which corresponds to 72 initiated bonds at the start of the 
reaction. The sample composition corresponds to C, = 0.3 and fT = 0.6. Also indicated on 
the figure is the size of the largest cluster (s’) and the second largest cluster (s”) at pc = 0.22. 

The position of the maximum, s,,,, which corresponds to the most probable cluster 
size, increases as the reaction proceeds with s,,,ccp. 

From the cluster distribution at p = p c  we calculate the exponent T, which describes 
the dependence of n, on s (n ,  - s-‘) for large s. The calculation is done for s > s,,, 
and we obtain T = 2.3 f 0.2 in agreement with the result for random percolation. (See 
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for example Stauffer et a1 1982.) Thus although the cluster distribution shows a peak, 
its behaviour for large s at p = p c  is in agreement with random percolation. 

From figure 1 we also observe that the peak frequency nmax decreases with increasing 
p and for p > pc the peak is particularly small because of the rapid decrease in the 
number of finite clusters. This non-monotonicity in the cluster size distribution is in 
sharp contrast to the monotonic decrease obtained in standard percolation models. 
One reason for the non-monotonicity in the cluster distribution is that in kinetic gelation 
the total number of clusters has an upper limit, being less than CJ3.  If all the bonds 
were distributed with equal probability among the growing sites then on the average 
each cluster would have a size proportional to PICI. In the absence of coalescence 
of clusters or annihilation of initiators we expect a Gaussian distribution centred about 
this typical size. Thus the maximum occurs at larger values of s with increasing p .  
However clusters can coalesce, giving rise to the long percolation type tail in the 
distribution as larger clusters have a higher probability of coalescing. Trapping and 
annihiration of initiators on the other hand contribute to a higher proportion of small 
clusters than would otherwise be observed. Both factors contribute to a broadening 
of the distribution and a diminution of the peak-results which are clearly observed 
from our Monte Carlo experiments. 

A similar non-monotonic cluster size distribution was observed in the two- 
dimensional simulations (Jan et a1 1983a). However for small values of s there are 
some differences between the 2~ and 3~ cluster functions. In 3~ there is only one peak 
whereas in 2~ the distribution shows two peaks; one at s = 1 and the other at larger 
s. In 2~ simulations because of the finite width of the s = 1 peak the number of very 
small clusters decreases with increasing s (e.g., n2> n3) whereas in 3~ simulations the 
reverse is true. This difference in the behaviour for small s between two and three 
dimensions probably arises because in two dimensions there are fewer ways for small 
clusters to grow than in three dimensions. Apart from these minor differences it appears 
that a non-monotonic behaviour is characteristic of the kinetic gelation model irrespec- 
tive of dimension (other properties of this model have been found to be different in 
two and three dimensions (Lookman et al 1983, Family 1983, Jan et a1 1983b, Hong 
et a1 1984)). 

To shed some light on the question of which of the parameters C,, Cs, fT influence 
the characteristic shape of the cluster size function we performed a set of simulations 
varying one of these parameters at a time. We found the following relations. 

(i)  For a given CI and fT, changing Cs did not produce any significant changes in 
the characteristic shape and location of s,,, of the cluster size distribution function. 

(ii) For fixed Cs and CI,  s,,, decreases slightly as fT increases, with 

(iii) For fixed Cs and fT, as CI increases smaX decreases. At p = p J 2  we find 

(2) 
c0.6 

I 

Within error bars this relation is also obeyed at other values of p. For a fixed absolute 
value of p we find that as C,  is increased the position of s,,, decreases until at CI = 0.04 
for small values of p the peak in the cluster size distribution disappears altogether. 
Thus for CI = 0.04 for the early stages of the reaction ( p  p J 2 )  one crosses over into 
the percolation regime. For larger extents of reaction the crossover to percolation type 
behaviour occurs at larger values of CI.  This is shown in figure 2 where n, is plotted 
as a function of s for fixed p / p c  and varying C,. 
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Figure 2. Normalised cluster distribution n, against s for fixed p / p , = O . 5  and varying 
initiator concentrations. The other parameters are the same as for the results shown in 
figure I .  

The strong dependence of s,,, on C, is consistent with the explanation that we 
have proposed for the appearance of a peak in the cluster distribution function. For 
fixed p ,  the typical size of a cluster p/CI will decrease as CI increases. Also as CI 
increases the average separation between locally growing clusters decreases, thus 
coalescence will begin to occur for clusters of smaller size. Both of these effects cause 
s,,, to decrease as C, increases. 

Whereas the cluster distribution function describes the distribution of finite size 
clusters it says nothing about the infinite cluster formed at pc .  We have calculated the 
fractal dimension df of the incipient infinite cluster in three-dimensional kinetic gelation. 
All of our calculations for df were made at that value of p for which the ‘susceptibility’ 
(weight average degree of polymerisation) goes through a maximum and hence are 
close to p c  but not strictly at p = p c .  This may account for the larger scatter in the data. 
We obtained the fractal dimension by putting grids of different resolution on the 
incipient infinite cluster and then counting the boxes in which sites are occupied. A 
log-log plot of the density of occupied boxes against the number of boxes for a given 
system size gives the slope d - df. For simulations with C, = 0.003, C, = 0.3 by averaging 
50 realisations on a cubic lattice of size 45’ we obtain df=2.4+0.3. We also found 
that df was unchanged when the fraction of tetrafunctional monomers was decreased 
from fT = 1 .O to fT = 0.6. We also analysed the incipient cluster for a simulation with 
a large initiator concentration CI=0.04. These data are for a smaller system size, 
L3=203. However within error bars they also give the same value of df. Thus we 
conclude that unlike the cluster size distribution function, the fractal dimension df is 
independent of C, or fT. Furthermore, within error bars the result obtained here for 
df in three-dimensional kinetic percolation agrees with that obtained for random 
percolation. 

The fractal dimension can also be obtained from the relationship df = ( y +  p ) /  v 
where y, /.3 and v are the critical exponents for the weight average degree of polymerisa- 
tion, the gel fraction and the correlation length respectively (see Stauffer et a1 1982). 
From the value of y ,  p and v obtained by Herrmann et al (1983) in three dimensions 
one obtains d f =  2.5. Thus our direct calculation of df is the first independent confirma- 
tion of the result obtained previously from the values of the critical exponents and 
further confirms the validity of the scaling relationship for kinetic gelation. For 
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two-dimensional kinetic gelation Hong et a1 (1984) also find that d f  is the same for 
random percolation and kinetic gelation and independent of C,.  The apparent depen- 
dence of df on CI reported by Family (1983) in two dimensions is probably related to 
small system size. 

To summarise we have shown that the cluster distribution function in three- 
dimensional kinetic gelation is non-monotonic and thus strikingly different from that 
in random percolation. The location of the peak in this distribution depends on p and 
CI, with a cross-over to random percolation type cluster distribution for large C,  
( CI > 0.04 for p < p C , J .  We calculate the cluster size exponent T for s > s,,, and find 
that this exponent is the same as in random percolation. We also obtain the fractal 
dimension for 3~ kinetic gelation and find that d f  is independent of C1 and also that 
df is the same as in random percolation. Our results for three-dimensional kinetic 
gelation are similar to those reported by Jan et a1 (1983), Lookman et a1 (1984), and 
Hong et a1 (1984) for two dimensions. 

We wish to thank N Jan and D Stauffer for extremely helpful discussions and advice 
at various stages of this work. 

Note added in proof: Recently, Chhabra er a/ (1984) have observed damped periodic oscillations in the 
cluster size distribution for three-dimensional kinetic gelation simulations. Their simulations were performed 
for much larger lattices (up to 603) and with much greater statistics (1000 to 20 000 samples as compared 
with 50 samples in our work). Because of the much lower accuracy of our work we do not observe these 
damped periodic oscillations. 
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